organic compounds

10564 measured reflections

 $R_{\rm int} = 0.034$

1336 independent reflections 1220 reflections with $I > 2\sigma(I)$

 $D = H \cdots A$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-[6-(6-Acetylpyridin-2-yl)pyridin-2-yl]ethanone

Huseyin Zekeriya Dogan,^a Abdurrahman Sengul^{a*} and Simon John Coles^b

^aDepartment of Chemistry, Faculty of Arts and Sciences, Zonguldak Karaelmas University, TR-67100 Zonguldak, Turkey, and ^bSchool of Chemistry, University of Southampton, University Road, Highfield, Southampton SO17 1BJ, England Correspondence e-mail: sengul@karaelmas.edu.tr

Received 8 March 2011; accepted 25 April 2011

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.105; data-to-parameter ratio = 16.1.

In the title compound, $C_{14}H_{12}N_2O_2$, the asymmetric unit comprises one half-molecule with an inversion center between the pyridine rings. The rings are *trans* coplanar with the acetyl groups deviating slightly from the mean planes, making a dihedral angle of 4.63 $(4)^{\circ}$. In the crystal, molecules are linked by weak intermolecular $C-H \cdots O$ hydrogen bonds, forming a supramolecular sheet parallel to (100).

Related literature

The compound is of interest with respect to supramolecular chemistry as a precursor for polypyridyl bridging ligands. For related structures, see: Parks et al. (1973); Potts et al. (1993); Zong et al. (2006); Şengül et al. (1998); Agac et al. (2010); Iyoda et al. (1990); Janiak et al. (1999); O'Donnell & Steel (2010); Kochel (2005). For applications of related structures, see: Parks et al. (1973); Iyoda et al. (1990); Şengül et al. (2009); Agac et al. (2010).

Experimental

Crystal data

 $C_{14}H_{12}N_2O_2$ $M_r = 240.26$ Monoclinic, $P2_1/c$ a = 3.9338 (2) Å b = 13.8005 (8) Å c = 10.8728 (6) Å $\beta = 94.437 \ (4)^{\circ}$

V = 588.50 (6) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^-$ T = 120 K $0.50 \times 0.20 \times 0.20$ mm

Data collection

Bruker–Nonius KappaCCD
diffractometer with APEXII area
detector
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
$T_{\min} = 0.955, T_{\max} = 0.982$

Refinement

D

$R[F^2 > 2\sigma(F^2)] = 0.042$	83 parameters
$wR(F^2) = 0.105$	H-atom parameters constrained
S = 1.10	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
1336 reflections	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$-\mathbf{H}\cdots \mathbf{A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	

$C3{-}H3{\cdot}{\cdot}{\cdot}O1^i$	0.95	2.56	3.2992 (16)	135	
	-	-			

Symmetry code: (i) $x + 1, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

This work was supported by the research project fund of Zonguldak Karaelmas University (grant No. 2010-13-02-04) and the UK Engineering and Physical Sciences Research Council.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2286).

References

- Agac, C., Yilmaz, I., Sengul, A. & Coles, S. J. (2010). Turk. J. Chem. 34, 781-791
- Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Iyoda, M., Otsuka, H., Sato, K., Nisato, N. & Oda, M. (1990). Bull. Chem. Soc. Jpn. 63, 80-87.
- Janiak, C., Deblon, S., Wu, H.-P., Kolm, M. J., Klüfers, P., Piotrowski, H. & Mayer, P. (1999). Eur. J. Inorg. Chem. 1999, 1507-1521.
- Kochel, A. (2005). Acta Cryst. E61, 0926-0927.
- O'Donnell, M. A. & Steel, P. J. (2010). Acta Cryst. E66, m1630.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Parks, J. E., Wagner, B. E. & Holm, R. H. (1973). J. Organomet. Chem. 56, 53-66.
- Potts, K. T., Raiford, K. A. G. & Keshavarz-K, M. (1993). J. Am. Chem. Soc. 115, 2793-2807.
- Sengül, A., Hursthouse, M. B., Coles, S. J. & Gillard, R. D. (1998). Acta Cryst. C54, 661-662.
- Şengül, A., Wang, W.-J. & Coles, S. J. (2009). Polyhedron, 28, 69-76.
- Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zong, R., Wang, D., Hammitt, R. & Thummel, R. P. (2006). J. Org. Chem. 71, 167-175.

supplementary materials

Acta Cryst. (2011). E67, o1295 [doi:10.1107/S160053681101556X]

1-[6-(6-Acetylpyridin-2-yl)pyridin-2-yl]ethanone

H. Z. Dogan, A. Sengul and S. J. Coles

Comment

The principles of supramolecular chemistry provide guidelines for the construction of quite complex molecules or constructs from relatively simple components. In this respect, 6,6'-diacetyl-2,2'-bipyridine, acting as a diketone has been widely used as a precursor or building block for the construction of polypyridine bridging ligands [Şengül *et al.*, 2009; Agac *et al.*, 2010; Potts *et al.*, 1993; Zong *et al.*, 2006]. The well established coordination ability of 2,2'-bipyridine suggests that ligands containing multiple pyridine rings joined through their 2,6-positions would be ideal for the self-assembly of mono-, double-, or triple-stranded helicates containing one or more transition-metal cations and producing a variety of coordination geometries and architectures. This area is therefore of interest with respect to supramolecular chemistry as a precursor for polypyridyl bridging ligands (Janiak *et al.*, 1999; Potts *et al.*, 1993; Zong *et al.*, 2006) and derivatives are important materials for the preparation of oximes or other funcionalities (Iyoda *et al.*, 1990; Parks *et al.*, 1973; Agac *et al.*, 2010).

As a continuation of work on the structures of such compounds (Şengül *et al.*, 1998) the title compound derived from the coupling of 6-bromo-2-acetylpyridine is reported herein. The molecule of the title compound (Fig. 1.) possesses a twofold symmetry where each of the pyridyl rings are *trans* to each other, forming an essentially planar structure. The bond lengths have normal values (Şengül *et al.*, 1998), and are comparable to those observed in similar compounds (Janiak *et al.*, 1999; O'Donnell & Steel, 2010; Kochel, 2005; Şengül *et al.* 2009).

In the crystal, molecules are linked through intermolecular C-H…O H-bonds (Table 1) to form a supramolecular network parallel to (100) (Fig. 1).

Experimental

The title compound was synthesized by the reported method of homocoupling of aryl halides using Ni(II) complex and zinc in the presence of triphenylphosphine by Janiak *et al.* (1999). The spectroscopic and analytical data are in good agreement with the reported values in literature by Zong *et al.*, 2006; Potts *et al.*, 1993; Agac *et al.*, 2010 and Parks *et al.*, 1973. The solid was crystallized from dichloromethane to afford colourless needless suitable for X-ray diffraction. Mp.: 178.5–179.5 °C. ¹H-NMR (dmso-*d*₆, $\delta_{p.p.m.}$): 8.81(d, 2H, *J*_{3,4} = 8 Hz, H3,3'), 8.23(d, 2H, *J*_{5,4} = 7 Hz, H5,5'), 8.07(dd, 2H, *J*_{4,3} = 8.2 Hz, *J*_{4,5} = 1 Hz, H4,4'), 2.79(s, 6H, 2xCH₃). *Calc.* for C₁₄H₁₂N₂O₂: C, 69,99; H, 5,03; N, 11,66 Found: C,62,54; H, 4,54; N, 11,68%. IR (ATR, *v* cm⁻¹): 3056 (CH_{ar}), 2990 (CH_{al}), 1590 (C=O), 1487 and 1437 (C=N and C=C), 1311, 1182, 1120, 1094, 1071, 995, 861, 748, 720. UV-*Vis* (MeCN, λ_{max}/nm): 286, 258, 219.

Refinement

Hydrogen atoms were fixed in idealized positions [0.98 Å (CH₃) & 0.95 Å (CH)] and refined using the riding model with U_{iso} (H) set to 1.5 and 1.2 U_{eq} (carrier) respectively.

Figures

Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code: (i) -x, -y, -z

Fig. 2. Intermolecular C=O···H contacts forming a supramolecular sheet along the a axis

1-[6-(6-Acetylpyridin-2-yl)pyridin-2-yl]ethanone

Crystal data

$C_{14}H_{12}N_2O_2$	F(000) = 252
$M_r = 240.26$	$D_{\rm x} = 1.356 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 452 K
Hall symbol: -P 2ybc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 3.9338 (2) Å	Cell parameters from 10564 reflections
b = 13.8005 (8) Å	$\theta = 2.9 - 27.5^{\circ}$
c = 10.8728 (6) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 94.437 \ (4)^{\circ}$	T = 120 K
$V = 588.50 (6) \text{ Å}^3$	Rod, colourless
Z = 2	$0.50 \times 0.20 \times 0.20 \text{ mm}$

Data collection

Bruker–Nonius Kappa CCD diffractometer with APEXII area detector	1336 independent reflections
Radiation source: Bruker-Nonius FR591 rotating an- ode	1220 reflections with $I > 2\sigma(I)$
10cm confocal mirrors	$R_{\rm int} = 0.034$
ϕ and ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.8^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2007)	$h = -5 \rightarrow 4$
$T_{\min} = 0.955, \ T_{\max} = 0.982$	$k = -17 \rightarrow 17$
10564 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.105$	H-atom parameters constrained
<i>S</i> = 1.10	$w = 1/[\sigma^2(F_0^2) + (0.0431P)^2 + 0.237P]$ where $P = (F_0^2 + 2F_c^2)/3$
1336 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
83 parameters	$\Delta \rho_{max} = 0.26 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.4161 (3)	0.54168 (8)	0.46613 (10)	0.0185 (3)
C2	0.4431 (3)	0.63598 (9)	0.51269 (11)	0.0234 (3)
H2	0.5670	0.6485	0.5895	0.028*
C3	0.2863 (3)	0.71096 (9)	0.44508 (12)	0.0277 (3)
H3	0.3018	0.7757	0.4748	0.033*
C4	0.1063 (3)	0.69010 (9)	0.33338 (12)	0.0248 (3)
H4	-0.0011	0.7402	0.2846	0.030*
C5	0.0871 (3)	0.59397 (8)	0.29474 (10)	0.0197 (3)
C6	-0.1175 (3)	0.56675 (9)	0.17703 (11)	0.0216 (3)
C7	-0.1483 (3)	0.46102 (9)	0.14615 (11)	0.0247 (3)
H7A	-0.2969	0.4528	0.0703	0.037*
H7B	-0.2460	0.4266	0.2139	0.037*
H7C	0.0780	0.4346	0.1341	0.037*
N1	0.2396 (2)	0.52066 (7)	0.35884 (9)	0.0190 (2)
01	-0.2556 (3)	0.62953 (7)	0.11205 (8)	0.0315 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0184 (5)	0.0192 (6)	0.0174 (5)	-0.0012 (4)	-0.0011 (4)	0.0013 (4)
C2	0.0270 (6)	0.0206 (6)	0.0215 (6)	-0.0012 (5)	-0.0047 (5)	-0.0012 (4)
C3	0.0333 (7)	0.0185 (6)	0.0297 (7)	0.0004 (5)	-0.0073 (5)	-0.0017 (5)
C4	0.0275 (6)	0.0199 (6)	0.0259 (6)	0.0018 (5)	-0.0053 (5)	0.0032 (5)
C5	0.0199 (6)	0.0200 (6)	0.0189 (5)	0.0005 (4)	-0.0012 (4)	0.0018 (4)
C6	0.0210 (6)	0.0234 (6)	0.0199 (6)	0.0019 (4)	-0.0019 (4)	0.0016 (4)
C7	0.0258 (6)	0.0245 (6)	0.0225 (6)	0.0006 (5)	-0.0063 (5)	-0.0017 (5)
N1	0.0191 (5)	0.0197 (5)	0.0178 (5)	0.0000 (4)	-0.0014 (4)	0.0016 (4)
01	0.0384 (6)	0.0282 (5)	0.0259 (5)	0.0068 (4)	-0.0104 (4)	0.0033 (4)

Geometric parameters (Å, °)

C1—N1	1.3423 (15)	C4—H4	0.9500
C1—C2	1.3975 (16)	C5—N1	1.3433 (14)
C1—C1 ⁱ	1.492 (2)	C5—C6	1.5058 (16)
C2—C3	1.3861 (17)	C6—O1	1.2189 (15)
С2—Н2	0.9500	С6—С7	1.5000 (17)
C3—C4	1.3878 (17)	С7—Н7А	0.9800
С3—Н3	0.9500	С7—Н7В	0.9800
C4—C5	1.3919 (17)	С7—Н7С	0.9800
N1—C1—C2	122.39 (11)	N1—C5—C6	116.16 (10)
N1-C1-C1 ⁱ	116.22 (12)	C4—C5—C6	120.48 (10)
C2C1C1 ⁱ	121.39 (13)	O1—C6—C7	122.48 (11)
C3—C2—C1	119.01 (11)	O1—C6—C5	120.02 (11)
С3—С2—Н2	120.5	C7—C6—C5	117.49 (10)
С1—С2—Н2	120.5	С6—С7—Н7А	109.5
C2—C3—C4	119.03 (11)	С6—С7—Н7В	109.5
С2—С3—Н3	120.5	H7A—C7—H7B	109.5
С4—С3—Н3	120.5	С6—С7—Н7С	109.5
C3—C4—C5	118.28 (11)	H7A—C7—H7C	109.5
С3—С4—Н4	120.9	Н7В—С7—Н7С	109.5
С5—С4—Н4	120.9	C1—N1—C5	117.92 (10)
N1—C5—C4	123.35 (11)		
Symmetry codes: (i) $-x+1, -y+1, -z+1$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C3—H3···O1 ⁱⁱ	0.95	2.56	3.2992 (16)	135.
Symmetry codes: (ii) $x+1, -y+3/2, z+1/2$.				

Fig. 1

